Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression
نویسندگان
چکیده
Improper use of land resources may result in severe soil salinization. Timely monitoring and early warning of soil salinity is in urgent need for sustainable development. This paper addresses the possibility and potential of Advanced Land Imager (ALI) for mapping soil salinity. In situ field spectra and soil salinity data were collected in the Yellow River Delta, China. Statistical analysis demonstrated the importance of ALI blue and near infrared (NIR) bands for soil salinity. A partial least square regression (PLSR) model was established between soil salinity and ALI-convolved field spectra. The model estimated soil salinity with a R2 (coefficient of determination), RPD (ratio of prediction to deviation), bias, standard deviation (SD) and root mean square error (RMSE) of 0.749, 3.584, 0.036 g·kg−1, 0.778 g·kg−1 and 0.779 g·kg−1. The model was then applied to atmospherically corrected ALI data. Soil salinity was underestimated for moderately (soil salinity within 2–4 g·kg−1) and highly saline (soil salinity >4 g·kg−1) soils. The underestimates increased with the degree of soil salinization, with a maximum value of ~4 g·kg−1. The major contribution for the underestimation (>80%) may result from data inaccuracy other than model ineffectiveness. Uncertainty analysis confirmed that improper atmospheric correction contributed to a very conservative uncertainty of 1.3 g·kg−1. Field sampling within remote OPEN ACCESS Remote Sens. 2015, 7 489 sensing pixels was probably the major source responsible for the underestimation. Our study demonstrates the effectiveness of PLSR model in retrieving soil salinity from new-generation multi-spectral sensors. This is very valuable for achieving worldwide soil salinity mapping with low cost and considerable accuracy.
منابع مشابه
ارائۀ سادهترین نسبتهای طیفی بهمنظور تشخیص برخی خصوصیات شیمیایی خاک در مناطق خشک با استفاده از تکنیک دورسنجی (مطالعۀ موردی: کویر درۀ انجیر بافق)
Introduction Understanding the spectral reflectance of different soils and other surface elements forms the basis for analyzing the process of interpreting remote sensing data. Spectral properties of the various phenomena of the Earth's surface are not constant and are changing, based on the complex time and space conditions. Determination of soil chemical properties using remote sensing techni...
متن کاملBand Selection Method for Retrieving Soil Lead Content with Hyperspectral Remote Sensing Data
Hyperspectral data offers a powerful tool for predicting soil heavy metal contamination due to its high spectral resolution and many continuous bands. However, band selection is the prerequisite to accurately invert and predict soil heavy metal concentration by hyperspectral data. In this paper, 181 soil samples were collected from the suburb of Nanjing City, and their reflectance spectra and s...
متن کاملImproving biological activity prediction of protein kinase inhibitors using artificial neural network and partial least square methods
Introduction: Protein kinase causes many diseases, including cancer; therefore, inhibiting them plays an important role in the treatment of many diseases. Traditional discovery inhibitors of this enzyme is a time-consuming and costly process. Finding a reliable computer-aided drug discovery tools which can detect the inhibitors will reduce the cost. In this study, it is attempted to separate ki...
متن کاملImproving biological activity prediction of protein kinase inhibitors using artificial neural network and partial least square methods
Introduction: Protein kinase causes many diseases, including cancer; therefore, inhibiting them plays an important role in the treatment of many diseases. Traditional discovery inhibitors of this enzyme is a time-consuming and costly process. Finding a reliable computer-aided drug discovery tools which can detect the inhibitors will reduce the cost. In this study, it is attempted to separate ki...
متن کاملA Robust Fuzzy Neural Network Model for Soil Lead Estimation from Spectral Features
Soil lead content is an important parameter in environmental and industrial applications. Chemical analysis, the most commonly method for studying soil samples, are costly, however application of soil spectroscopy presents a more viable alternative. The first step in the method is usually to extract some appropriate spectral features and then regression models are applied to these extracted fea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015